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Impact of composition of extended objects on percolation on a lattice
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We consider the percolation aspect of random sequential adsorption of extended particles onto a two-
dimensional lattice using computer Monte Carlo simulations. We investigate how the composition of the
particles influences the value of the percolation threshold. Two regimes can be distinguished: one for almost
linear particles (with the composition of straight segments reaching 85-100 %) and the second one for more
bent (flexible) ones. For more bent particles we found a high correlation between the percolation threshold and
the structure of an adsorbate at percolation. We also observe that there is no difference in the conclusions for

both kinds of lattice considered (square and triangular).

DOI: 10.1103/PhysRevE.78.011101

I. INTRODUCTION

Even though the problem of percolation [1] has been
known for many years [2] and many papers have dealt with
its various aspects, there are still many interesting questions
to be answered. In a basic lattice formulation, each site is
occupied with the probability ¢ or is empty with the comple-
mentary probability 1—c. As ¢ increases from 0, neighboring
occupied sites start to form connected clusters with greater
and greater size. Eventually, for a certain threshold value Cps
there appears an “infinite” cluster that spans the whole sys-
tem. The probability threshold depends on the system’s size
L, but it has a finite limit as L— (the convergence is a
power law [1]). There are many applications of the percola-
tion theory in physics and chemistry, especially in disordered
systems, porous media, and critical phenomena. Percolation
is the simplest nontrivial model of phase transitions and is
widely used in describing transition phenomena [3] (e.g., ge-
lation). Other important applications include resistivity of
composites [4,5] and strain behavior of solids [6].

There are several mechanisms of particle deposition onto
a surface, but among them random sequential adsorption
(RSA) both is relatively simple and has many successful
applications in theory and experiment. The starting point in
this approach is usually an empty substrate surface. The pro-
cess of adsorption is sequential, i.e., there is only one particle
being adsorbed at a time. The position and orientation of the
adsorbed particle at each trial is generated randomly. The
result of each trial is determined by a nonoverlapping rule:
the trial is accepted (and the particle is adsorbed) if there is
no overlapping with the previously adsorbed particles. How-
ever, if any part of the particle overlaps with some other
particles, the whole trial is rejected and a new position and
orientation (in some models also a new shape) is generated
again (without any correlation to previous trials). The whole
process is irreversible—adsorbed particles stay on the sur-
face forever at the adsorbed positions.

The RSA approach originates from the work of Flory [7],
who studied a cyclization reaction in a polymer chain in
which adjacent pendant groups link randomly. In general, in
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RSA-type models [8—13] one usually consider atoms, mol-
ecules, or geometric shapes like circles, lines, or ellipses that
adsorb on polymer chains, solid surfaces, biological mem-
branes, or lattice or continuum planes. These models are
widely used in various fields of physics and chemistry, espe-
cially where one deals with irreversible processes. The ap-
proach of RSA has been used, among others, in models for
reactions on polymer chains [7,14], chemisorption on crystal
surfaces [15], adsorption in colloidal systems [16,17], ran-
dom growth in surface physics [18], growth processes in
three-dimensional (3D) solid state physics [19,20], technol-
ogy of composites [21], granular matter study [22], and dis-
ordered systems [23] and also in the wider context of ecol-
ogy [24] or sociology [25]. For an extensive overview of the
field, see Refs. [26-28].

Recently the irreversible adsorption of large particles
(polymers, nanoparticles, etc.) has attracted much attention.
Among many papers devoted to the subject one can mention
Ref. [29], where blocking effects in the adsorption dynamics
of linear macromolecules are explored. In Ref. [30] a scale-
invariant behavior of the jamming time for linear particles
adsorbed on arbitrary finite square lattices is revealed. An
analytical derivation of the power law describing the size of
jamming fluctuations on homogeneous and inhomogeneous
lattices can be found in [31]. The other shapes on a triangular
lattice as well as their mixtures were considered in Ref. [32]
(see also references therein), where the approach to jamming
was investigated. There is an interesting comparison study of
lattice adsorption versus continuous adsorption in Ref. [33].

Relatively many papers have been devoted to determining
the universality class and the threshold for the percolation of
particles modeled by random walks of given length; see
Refs. [34-36]. Additional effects connected to nonperiodicity
of the substrate (or contamination of the underlying regular
lattice) were studied in Refs. [37-39]. Some generalizations
of the problem using mixed side-bond percolation can be
found in Refs. [40,41]. The interplay between jamming and
percolation for monomers, dimers, and square particles at
various temperatures was studied in Refs. [42-45]. An inter-
esting model of percolation of very large polymers (with the
length of order of the system size) is discussed in Ref [46].
Some aspects of percolation in nanocomposite films were
described in Ref. [47].
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The solutions of most percolation problems are of mainly
approximate nature, since the exact calculations can be done
only in very special cases (e.g., ¢, for random percolation on
a triangular lattice or percolation on Bethe lattices [1]). We
decided to perform Monte Carlo simulations of the problem
since other approaches did not prove promising.

The paper is organized as follows. In Sec. II we describe
the details of the model. A discussion of finite-size scaling
and the error bars of the data is included in Sec. III. The
main results of the paper are presented in Sec. IV. The rea-
sons for lack of percolation for some sets of parameters are
discussed in Sec. V. Additional data on the other (triangular)
lattice confirming the previous conclusions (drawn for the
square lattice in Sec. IV) are described in Sec. VI. Some
additional facts on cluster structure are put forward in Sec.
VII. Concluding remarks are included in Sec. VIIIL.

II. MODEL

In this paper we study adsorption of extended particles of
fixed length on a lattice. The coverage of the surface is in-
creased in the process up to the percolation threshold, when
there appears a so-called infinite cluster (a cluster that ex-
tends through the whole system). The resulting percolation
threshold depends on the spatial structure of the particles
being adsorbed and their size. We investigate here by means
of Monte Carlo simulations how the composition and the
size of the particles determine the threshold. Other aspects of
a similar model were studied in Ref. [48]. In order to obtain
a deeper insight into the problem we carried out simulations
on two kinds of 2D lattice: square and triangular.

Each particle is modeled here as a group of a consecutive
neighboring sites (monomers) of the lattice (we deal with
unbranched polymers). Between successive monomers we
have bonds that form a broken line (the backbone of the
particle). By the composition of the particle we understand
here the fractions of corresponding bending types in a back-
bone. On a square lattice there are only two types of bend-
ing: straight (S0) and at right angles (S1); on a triangular
lattice we have three: straight (70), slightly bent at the angle
of 120° (T'1), and highly bent at the angle of 60° (T2); see
Fig. 1. For a given particle composition (p,, p;) for the
square lattice and (py, p,, p,) for the triangular one, we put
particles on a lattice randomly (details below) until percola-
tion appears. Then the resulting density of the particles is
calculated (the ratio of occupied sites of the lattice to the
number of all sites accessible). To obtain statistically reliable
results with a low level of fluctuations we carry on the simu-
lations for a given composition of particles for N=100 times.
In order to acquire a comprehensive set of data for each
considered particle size (a=3,...,30), we sample the whole
space of compositions with a density step from 0.2 down to
0.01.

A single run for the given composition starts with an
empty substrate (a square L X L on the square lattice, a hexa-
gon with the edge of L lattice units on the triangular one, and
hard wall boundary conditions adopted in both cases). The
process of adsorption is random and sequential, i.e., at any
time we try to put randomly (at random position and orien-
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FIG. 1. Possible types of backbone bending on a square (top)
and a triangular lattice (bottom).

tation) a single particle. Its shape is generated also randomly
according to the probability distribution of possible bending
types (pg:p, for the square lattice, py:p;:p, for the triangu-
lar one). Thus the exact numbers of bending of each type can
vary from particle to particle, while the average composition
remains constant in a single run. If the particle under consid-
eration overlaps with the particles previously adsorbed, the
whole trial is rejected. If there is no overlapping, the particle
stays there forever. In each case, we then try to put on the
substrate a new particle (with a new shape) at a new position
with a new orientation. We repeat this procedure until the
percolation cluster arises in the system (i.e., the opposite
edges of the system are connected via some path of nearest
neighbor sites occupied by the particles). One can consider
many definitions of the overall connectivity (e.g., any oppo-
site edges are to be connected, given opposite edges are to be
connected, all opposite edges are to be connected, etc.), but
asymptotically all are equivalent [49]. Here we check the
connectivity between upper and lower edges of the system. It
appeared that for some values of the simulation parameters
we cannot observe percolation, especially for long particles
and p, very close to 1. In this case particles tend to form
compact, isolated islands, so the connectivity in the system is
poor. Jamming in the system sets in before percolation can
appear (no more particles can be added due to a lack of free
space of appropriate shape). More detailed discussion of this
effect is postponed to Sec. V. For reliability of the results it is
important to keep finite-size effects within reasonable limits.
For bigger lattices the statistical fluctuations of the threshold
obtained are smaller. Also the difference between the limit-
ing (“exact”) value of the threshold (size of the lattice
L—) and the values obtained for a given size L drops
down to zero with increasing L. Thus it is desirable to use as
large latices as possible. We carry out our simulations on
lattices as big as L=1000 for a square lattice and L=300 for
a triangular one. Extensive discussion of finite-size effects
(scaling), statistical deviations, and errors is included in the
following section.
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FIG. 2. Standard deviations ¢ of the square lattice threshold for
a=3, 10, and 30 as a function of the lattice size L. The composition
parameters are p,=0.80, p;=0.20. Straight lines represent power
law fits with exponents —0.770(21), —0.724(25), and —0.770(22) for
a=3, 10, and 30, respectively.

II1. DISCUSSION OF FINITE-SIZE SCALING

For percolation-type systems on finite lattices, it is known
[1] that finite-size scaling theory describes correctly the de-
pendence of the average threshold and its standard deviation
on the size of the lattice L. In such systems one assumes that
the probability II that a lattice of linear size L percolates at
concentration p has the form Il(p,L)=®[(p—p*)L""]. The
scaling function ®(x) increases from 0 to 1 as its argument x
increases from — to +. Here p* is the infinite (exact) per-
colation threshold (as L — ) and the constant v is the critical
exponent (4/3 for simple site percolation in two-dimensional
systems). It appears from the scaling theory that (a) the stan-
dard deviation o of the threshold (o=(p?)—{p)?) measured
for a finite lattice L satisfies the power law

O_OCL—l/V’ (1)

and (b) the effective percolation threshold ¢, (the mean value
measured for a finite lattice) approaches the exact value p*
also via power law

c,=p L. (2)

To check the validity of relation (1) we collected data for
various sizes of the particles (a=3,...,30), various compo-
sitions (p;=0,0.2,0.4,0.7,0.9), and square lattices of vari-
ous sizes (L=30, 60, 75, 100, 130, 180, 300, 500, and 1000).
Obviously, for long particles (a= 30) we omit the lattice size
L=30 due to extremely high finite-size effects. For all data
we obtained the confirmation of Eq. (1) with the value of the
exponent 1/v ranging from 0.69 =0.02 to 0.77 = 0.02. This
coincides with the theoretical value for two-dimensional per-
colation 1/v=0.75. A typical log-log plot of o vs L is given
in Fig. 2. Numerical points follow the power law within
reasonable accuracy.

In the following we will analyze the percolation threshold
) for L=1000 as a function of composition in more detail,
but now we estimate the differences in the threshold value
between the finite (L=1000) and infinite (exact) cases: A
=|c,(L=1000)-p*|. Plotting the mean value c, of the thresh-

p
old for various lattice sizes L against L~Y" we confirm the
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FIG. 3. Finite-size scaling of the square lattice threshold c,
against L~!" for v=4/3, particles with a=3, 10, and 30, and lattice
size L=30,...,1000. The composition parameters are p,=0.80, p;
=0.20.

validity of the finite-size scaling in the system. From the
plots we estimate the difference A =0.004 for all parameters,
except for very long straight particles (a =30 and p,= 1.00),
where A=0.01. An example of such a plot is given in Fig. 3.
Our A stands here for the error we make taking thresholds
for L=1000 instead of the exact (L— ) value.

We can also ask about the statistical fluctuations and un-
certainty for the chosen L=1000. We obtain the mean value
of ¢, in a series of N=100 simulations. The statistical error
of the mean is VN times smaller than the standard deviation
0. The numerical values of this error are well below 1073 for
all parameters of the model and do not exceed 2 X 10~ for
L=1000.

IV. RESULTS FOR SQUARE LATTICE

In the case of the square lattice we analyzed particles of
sizes between 3 and 30. We skipped the case a<<3 (mono-
mers and dimers), as one cannot speak about the composition
of such small particles. We chose the sampling step of p as
0.1, but additionally we considered a more refined grid for
sufficiently small p;, where the percolation threshold
as a function of a composition changes more quickly
(small p, implies py=1.0, i.e., straight particles).
The considered value of p; belongs to the set
{0,0.01,0.02,...,0,05,0.010,0.15,0.2,0.3, ...,1.0} and the
complement po=1-p;. The percolation threshold c, is
shown in Fig. 4. For all lengths and compositions of the
particles we plot the resulting percolation threshold (lines are
guides for the eye only), obtaining a two-dimensional sur-
face. The sections of this surface for constant values of the
length a are the main point of interest in this work, since they
show the composition dependence of the percolation thresh-
old. Examples for some chosen lengths (¢=5, 10, and 20)
are shown in Fig. 5. It can be seen that the variation of
composition dependence is larger for longer particles, while
for the smallest ones (a=3) the threshold remains a nearly
constant function. For all lengths, however, we observe a
common qualitative behavior as p; increases from zero. For
p1=0.0 (thus py=1-p;=1.0 and the particles form straight
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FIG. 4. Percolation threshold c), as a function of the particle size
a and its composition on a square lattice (p; is the relative amount
of bendings of type S1). Here the size of the system L=1000. Lines
are guides for the eye only.

needles) we have a local maximum; then the threshold
sharply decreases as p; approaches a particular value of 0.15,
for which we have a minimum. Then the function increases
in a linear manner in the rest of the interval [0,1].

The fact that for higher values of p; the threshold is larger
comes from the smaller diameters of such particles (to make
up a percolating cluster one needs more particles, when they
are more compact). In contrast, the straightest shapes (with
p1=0.0) do not mean the easiest way of making connections
in the system (or the lowest value of the percolation thresh-
old). This is because needlelike particles in the process of
adsorption make domains of common alignment. When a
linear particle is adsorbed close to another particle with the
same orientation, they will be likely connected by other par-
allel particles. The density of a system composed of such
domains is higher than for more flexible (bent) particles,
where the particles have more possibilities of touching each
other and the clusters have a sparser structure. It should be
noticed that the changes of the threshold ¢, are large in the
vicinity of p;=0. From the experimental point of view, this
means that the system is very sensitive to small deviations
from linearity of the particles (in the case of less straight
particles, variation of their composition results in smaller
changes of the percolation threshold).

With the two above-mentioned mechanisms of increasing
the threshold for either small or large values of the parameter
P1, one expects a minimum at some intermediate value of p;.
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FIG. 5. Percolation threshold as a function of the particles’ com-
position only. Each line represents a section of the surface of Fig. 4
for the given particle length (here a=5, 10, and 20). The size of the
system L=1000. Lines are guides for the eye only.
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FIG. 6. Comparison of the relative height Ac), of the maximum
of the percolation threshold for linear particles as a function of the
particle length a for two kinds of lattice: square (squares) and tri-
angular (triangles). This height is measured against the reference
level; see text for details. Uncertainties are smaller than the size of
the symbols.

The localization of this minimum can in general depend on
the size of the particles. We found, however, that it is not the
case here—the value of p;=0.15 is universal for particles of
all sizes. That means that this specific composition (pg
=0.85,p;=0.15) is the most favorable one for percolation on
a square lattice. Unfortunately, a theoretical determination of
that value is difficult and still needs further investigation.

We consider now the threshold ¢,(py,p;) as a sum of a
linear part (the main component) and a function with a peak
around p;=0 (the domain component). In particular, we mea-
sure the height of the peak of the latter in the following way.
We take the difference Ac, between the value of ¢, obtained
in simulations for p;=0 and the linear dependence extrapo-
lated to p;=0 (we draw an extrapolation line through two
points for p;=0.4 and 0.7, since in that interval we have very
well-pronounced linear behavior of ¢,). The resulting height
of the peak accounting for domains of parallel alignment is
presented in Fig. 6. The results for the square lattice are
plotted as squares. The triangles on the plot correspond to a
similarly defined Ac, on a triangular lattice; see the detailed
discussion in Sec. VI. The uncertainties of the data shown
are smaller than the size of the symbols.

V. NO-PERCOLATION REGIME

For large values of p;=0.8 and for long particles (a
>23) there are problems in reaching percolation. For such
compositions the particles are quite compact and connectiv-
ity between them is rather low. The interparticle space is
narrow, so it is difficult to adsorb another big compact par-
ticle. Owing to the statistical algorithm used for generating
the shape of the particles (each next bond is chosen accord-
ing to probability), it is often possible to fill such a narrow-
shaped space with a big particle; however, one needs an ex-
tremely large number of trials (very long expected values of
adsorption times). In order to avoid waiting for practically
infinite time to end a simulation, we introduced in our com-
puter code a maximum number of allowed unsuccessful ad-
sorption trials in a row. After reaching this limit a current run
is qualified as “no-percolation” case and stopped. In Fig. 4
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only such sets of parameters are taken into account, for
which in all N=100 runs percolation was reached. For each
series of simulations we introduce the quantity NNOF, the
ratio of the number of no-percolation cases to all cases in a
series (N). For L=1000 we obtained NNO°>0 for a=30
(p;=0.8), a>26 (p,=0.9), and a>23 (p,=1.0). The finite-
size scaling of NNOP done for L=30,...,1000 divided the
considered set of parameters (a, py, and p;) into two catego-
ries: (a) those for which NNO? — 0.0 as L increases, and (b)
those for which NNP — 1.0 as L increases. In other words,
the transient set of parameters for which neither NNF 0 nor
NNOP £ 1 is shrinking as we go to larger lattices. Thus the
no-percolation characteristics can be attributed to the given
particles’ parameters (namely, their size and composition)
rather than stemming from computational limitations and
finite-size effects. A similar absence of percolation in adsorp-
tion models was reported in the study of adsorption of big
squares on a lattice [50,51], where no percolation was found
for the size of the squares a>3.

VI. RESULTS FOR TRIANGULAR LATTICE

We carried out the simulations also on the triangular lat-
tice in order to check the universality of the studied depen-
dencies. Indeed, the whole behavior is confirmed. The details
of the triangular version of the simulations do not differ dis-
tinctly from the square case. Here we considered particles of
size a=3,...,20 and the substrate size L as large as 300.
These values are smaller than those for the square case
mainly due to the much larger computational costs of simu-
lations on the triangular lattice. For example, the time forNV
=100 simulations for (pgy,p;)=(0.2,0.8) and L=300 was
about 31000 s (nearly 9 h), while for (pg,pi.p2)
=(0.2,0.4,0.4) and the same values of L and N the simula-
tions on the triangular lattice lasted 81 000 s (22.5 h).

The typical landscape of dependence of the percolation
threshold on the composition is given in Fig. 7, where c, is
plotted against p; and p, (probabilities of bending types T'1
and T2 of Fig. 1, respectively) for particles of size a=10.
The three vertices of the plot, left, right, and rear, correspond
to straight linear particles (py=1, p;=0, and p,=0), particles
with bonds of type T1 (py=0, p;=1, and p,=0), and most
bent particles with bonds of type T2 (py=0, p;=0, and p,
=1), respectively. The arrows on the plot point to isolines of
constant level of p; or p,. It can be clearly seen that the
behavior of the threshold is dominated by the linear part (flat
surface), above which there is a peak around the leftmost
vertex that corresponds to the linear straight particles.

Finite-size scaling was checked also for these data and we
obtain confirmation of Eq. (1) with the value of the exponent
1/v ranging from 0.68 to 0.81 with errors =0.05. Again this
coincides with the theoretical value for two-dimensional per-
colation, 1/v=0.75. As before, we estimate the difference in
the threshold value between the finite (L=300) and infinite
(exact) cases: A=|c,(L=300)-p*|. From the plots of the
mean value ¢, of the threshold against L™""”, we obtained the
difference A=0.004 for all parameters, except for long
straight particles (¢=20 and py=1.00), where A=0.012.
Again the value of A is considered as giving the accuracy of
Fig. 7.
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FIG. 7. Percolation threshold c, on the triangular lattice for
particles of length =10 as a function of their composition (p;,p,).
The arrows point to isolines of constant level of p; or p,. The
leftmost vertex (with ¢,~0.41) corresponds to strictly linear par-
ticles (pg,p1,p2)=(1,0,0); the rightmost one with ¢,~0.39 corre-
sponds to particles made of T1-type bending only [composition
(0,1,0)] while the rear one describes the most compact case of cp
~(.55 and composition (0,0,1). The dotted lines approaching the
value c,~0.33 represent the reference level, from which the height
Ac), of the peak is measured (see more details in the text).

We now determine the height of the peak rising above the
plane of Fig. 7, as it is a measure of deviation from linear
behavior for straight particles. We took three representative
points on the flat (linear) part of the plot, (pg,p;.p2)
=(0.6,0.4,0.0), (0.6,0.0,0.4), and (0.2,0.4,0.4), and we ex-
trapolate this plane to the composition of linear particles
(1.0,0.0,0.0) (see the dotted lines on Fig. 7). The height of
that peak, Ac,, is plotted on Fig. 6 with triangles. One can
see that the data for square and triangular lattices coincide.
Here the error bars do not exceed the size of the symbols.

The most favorable composition (for which the percola-
tion threshold acquires its minimal value) is located for all
particle sizes at p,=0 and p; between 0.2 and 0.3 (thus p,
lies between 0.7 and 0.8). The more exact estimation of that
point needs further study, however.

On the triangular lattice there are also simulations where
no percolation was reached (see more detailed discussion of
this effect in Sec. V). For relatively small particles (a < 14),
we arrive at percolation at every run for all compositions
(po,p1-P2)- When we consider larger particles, more bent
shapes cease to percolate while straight ones still form per-
colating clusters. Here the value of the percentage p, of most
bent segments is crucial. For example, percolating particles
for the most bent shape (p,=0,p;=0,p,=1) have the maxi-
mum size a=13, for lower p, (py=0,p,=0.4,p,=0.6) the
maximum size is a=22, but for p,=0 all considered particles
(up to a=30) percolate. The exact finite-size scaling of NNOF
in the triangular case was not done, however, due to very
long times of simulations for high values of lattice size L and
particle size a.

VII. CLUSTER STRUCTURE ANALYSIS

In order to verify the possibility of correlation between
the percolation threshold and some single-particle character-
istics, we checked also how the composition of the particles
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affects the mean square radius of gyration and the mean end-
to-end distance. It turned out that there is no sharp transition
for any composition of a single particle, so the appearance of
different regimes of percolation (high value of the threshold
for almost straight particles, no percolation for very compact
particles, mild linear dependence for the other cases) can be
attributed only to collective interaction of the particles.

On the other hand, the composition of the particles influ-
ences the structure of the percolating cluster. We investigated
this relation further and looked at the percentage of sites
having a given number of neighbors. We found a strong cor-
relation between the relative number of sites with exactly
two neighbors (for the square lattice) and the percolation
threshold. For the linear part (away from the peak for pg
=0.8 and no-percolation regime) the equation c,=0.897(1
—R,) is satisfied within an accuracy of 0.03. The quantity R,
is defined as the mean ratio of a number of adsorbed sites
with exactly two neighbors to the total adsorbed number of
sites (monomers of the particles) at percolation, averaged
over N simulation runs. The collected data (for p, €[0.1,0.8]
in the square case) as well as the linear relation postulated
above are presented in Fig. 8. The statistical errors of the
points are of order o(R,)=0.02 and o(c,)=0.015. All data
presented in Fig. 8 are obtained for lattice size L=300.

VIII. CONCLUSIONS

We analyzed the random sequential adsorption of ex-
tended particles with a given size and composition of the
shape on square and triangular lattices. The shape variables
on the square lattice py,p, (defined as the percentage of a
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FIG. 8. Correlation between the percolation threshold c,, and the
percentage R, of monomers with exactly two nearest neighbors at
percolation for various compositions (p;=0.2,...,0.9) and sizes
(a=3,...,20) of the particles (for the square lattice). The line c,,
=0.897(1-R,) is also shown. Statistical errors are smaller than
0.015 for ¢, and smaller than 0.02 for R,.

given kind of bending in a chain) influence the percolation
threshold ¢, in such a way that one can look at the whole
landscape of the function c,(pg.p;) as a sum of a mildly
linear part for p;=0.4 and sharp peak around p;=0. The
overall behavior of the threshold ¢, is common on both lat-
tices considered. In particular, the height of the peak as a
function of the particle size coincides for both cases.

A linear correlation between the percolation threshold and
cluster structure (more precisely, the relative amount of
monomers with exactly two neighbors at percolation) was
observed for particles with 0.2=p,; =09 (on a square
lattice).
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